電波科学による 防災・減災への取り組み

東北大学

東北大学 東北アジア研究センター

教授 佐藤 源之

§ 源之

sato@cneas.tohoku.ac.jp

2015年2月6日 災害・危機管理ICTシンポジウム2015 第19回「震災対策技術展」横浜

あらまし

ー豪雨・火山噴火被害の観測と予測ー

新しい技術の導入

- 近距離レーダ
- 干涉SAR
- ポーラリメトリ

防災・減災への取り組

- 地滑り GB-SAR
- 被災者捜索 地中レーダ(GPR)
- 家屋の耐震診断のためのレーダセンサ

東日本大震災

ASIAN STUDIES

JAXA 地球観測衛星 ALOS「だいち」

L-band Fullpolarimetric SAR f=1.27GHz

2010年6月

石巻市街地

ALOS/PALSAR

光学センサー

電波散乱の機構 Pd(red), Pv (green) Ps (blue).

 $-40 - 30 - 20 - 10 \ 0 \ 10 \ 20 \ 30 \ 40 \ (deg)$

Pi-SAR2 (NICT, 情報通信研究機構)

ASIAN STUDIES

瓦礫量の推定

ステレオSAR 投影法による高さ推定

Track altitude: 8753 m Across-track separation: 16778 m

SARで推定した瓦礫量と実測値の比較

Ground-Based SAR (GB-SAR:地表設置型合成開ロレーダ) による地滑り長期モニタリング

栗原市 荒砥沢 大規模地滑り

宮城県栗原市荒砥沢地区

- 2008年6月 岩手・宮城内陸地震による大規模な地すべり 地すべり斜面: 1300 x 900 m
 2次災害防止・復旧工事安全確保のための監視が必要
 2011年11月 GB-SARを設置、試験運用開始
- 2012年6月 長期モニタリング運用開始

地上設置型合成開口レーダ (GB-SAR)

イタリア IDS社製 IBIS-L

- 送受信にホーンアンテナ
- 中心周波数 17.2 GHz (Ku-ban
- 周波数帯域 150 MHz
- 約2mのレール上を約1分半で走査、2分ごとに1走査
- 5 mm 毎に電波を送受信
- 位相差を利用し微少変動を検知(レーダインターフェロメトリ)

合成開口処理

バックプロジェクション型合成開口処理:

$$g(x,r) = \int \int s(x',\tau) dx' d\tau$$
$$\tau = \frac{2}{c} \sqrt{(x-x')^2 + r^2}$$

g(x, r)	: SAR processed image
s(x', t): Raw data
C:	Propagation velocity (= 3x10 ⁸ m/s

合成開口処理のアニメーション

地すべり斜面の変動分布

位相干渉により求めた変動をDEM上に投影 正の変動: レーダから遠ざかる変動 負の変動: レーダに近づく変動

コヒーレント画像の生成

実データを用いた提案手法の検証 -大気補正と変位推定-

ターゲット	三面反射鏡(40cm)
レーダとの距離	About 460m(GPS)
変位	視線方向でレーダから離れる方向に 8mmまで

位相差と大気補正

大気補正前後の位相差マップ

ともに大気の影響が補正

地すべり斜面の長期的変動分布

(2012年6月~2013年5月)

地すべり斜面の長期的経時変化

(2012年6月~2013年5月)

TOHOKU

地すべり斜面変動

傾斜の急な窪地で正の変化(レーダから遠ざかる変化) 傾斜の緩やかな斜面下部で負の変化(レーマへ近づく変化) 斜面表層土砂の小規模な流出・堆積

監視カメラの映像

地震による地すべり斜面の変化

- 2012年12月7日 17:18に三陸沖を震源とする地震
- 栗原市栗駒で震度4を観測

地震後(12月16日 8:00)

地震前後30分間の斜面の変化

地震による斜面の経時変化

アレイ型地中レーダ「やくも」による 捜索活動

周波数	50MHz - 1.5GHz
レーダ方式	ステップ周波数
アンテナ素子	ボウタイアンテナ
アンテナ数	送信8,受信8 (3-8組に可変可能)
計測間隔	走行方向に1cm
計測速度	7km/h (1cm間隔で計測時)

野蒜築港でのアレイGPR計測 (2013年2月)

名取市 閖上海岸 2013年3月

<u>GPR計</u>

閑上海岸 2013年3月

GPRデータの水平面 スライス表示 閖上海岸 2013年3月

「やくも」が発見した 木造住宅の一部 深さ50cm、長さ1m 以上の梁材?

検知した埋設物

λ 🔸

X

5m格子に埋設物 の有無を書き込ん でいます。 こうしたマップを捜 索作業を行う皆さ んに提供し、砂浜 を掘削する地点の 参考にします

強い反射のある地点 (金属板では無いかと思われる)

UNIVERSITY

閑上海岸の砂浜断面(2013年3月)

10m 付近 ほぼ正確な縦横比

30m 付近 ほぼ正確な縦横比

10-60m 縦横比 1:10

ASIAN STUDIES

岩手、宮城、福島県警との協力

蒲生海岸で「やくも」が検知した遺留品

蒲生海岸で「やくも」が検知した遺留品

女川町 2011年4月

電磁波を用いた 建造物非破壊センシング技術の研究開発

高度通信·放送研究開発委託研究 情報通信研究機構 (NICT) (H24~H28)

建造物非破壊センサーの研究開発と診断技術への実用化

GB-SAR システム(1次元走査)

コンクリート供試体の計測実験

λX

Frequency : 1GHz-4GHz Scan length (x): 80cm Scan length (y): 80cm Scan step (x) : 2.0cm Scan step (y) : 2.0cm

地震後の木造建築の被災度評価

明らかな損傷 大きな残留変形

電磁波センサによる

内部探查

部分的な損傷 残留変形は僅か

半壊?全壊? 修復可能?不可能?

正確な診断をするためには、耐力要素の 内部の損傷を確認する必要がある。

試験体仕様

- •木造住宅外周壁(耐力壁)
- •H24年度:幅1間(1,820mm)
 - H25年度:幅1.5間~2間(2,730~3,640mm)

壁の仕様 ※新耐震以降を主に検討する

年代	耐力要素	外装	内装	下地等
新耐震以前	土塗り壁	漆喰	土塗り	木舞
新耐震以降	筋かい	金属板	化粧合板	断熱材(グラスウール)
阪神以降	構造用面材 (MDF)	窯業系サイディング	石膏ボード +クロス	防水・透湿シート 断熱材(スタイロフォーム)

試験体仕様

筋違型耐力壁(新耐震~阪神淡路大震災)

CENTER FOR NORTHEAST ASIAN STUDIES

固定金具(ヘキサプレート)の変形

1.0.2.16港区周期的回期日

11 1

A TITLE CONTRACTOR

THE THE THE ACT

9 5119217 430

筋交いの損傷

Vivaldi Antenna Array

Vivaldi Antenna 7.5 cm* 7.8 cm

2D Scan on a Wooden Wall Model

- Frequency rang: 1 GHz 20 GHz
- Sampling points: 801
- IFBW: 1 kHz
- Polarization: HH, HV, VV(under measuring)

CENTER FOR Scan interval (dx=5 mm, dy=5 mm) NORTHEAST ASIAN STUDIES can time: 24 hours

Higher Frequency (5-20 GHz) HV

0 0 C 0.1 0.1 0.1 0.2 Debth <u>a</u> 0.3 0.2 Debth [<u>J</u>] 0.2 0.4 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.6 0 0.2 0.4 0.6 0.8 0.6 0.2 0.4 0.8 0.2 0.4 0.6 0.8 X[m] X[m] X[m] 0 0 0 0.1 0.1 0.1 0.2 0.20.4 0.4 0.4 0.5 0.5 0.5 0.6 0 0.6<mark>∎</mark> 0 0.6 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.2 0.4 0.6 0.8 0.8 X[m]

FOR EAST ASIAN STUDIES

水平断面 (HV)

マイグレーションイメージ(動画で表示します)

R: |HH-VV| G: 2HV ASIAN STUDIES

CENTER FOR NORTHEAST

R: |VV| G: HV B: HH

UNIVERSITY

Resolution Experiment with Metal Spheres

Damage Detection using Polarimetric Phase

三井造船 10-20GHz システム

Target Specifications for High Resolution Type MPLA-Radar

Application	E.g. Safety assessment of wooden braces inside the walls of wooden houses damaged by a big earthquake
Radar Type	Multi Path Linear Array Radar
Frequency Band	10~20GHz (Step Frequency)
Array Antenna Unit	64 antennas (32 transmitting + 32 receiving)
Spatial Resolution	∼7.5mm
Detectable Depth	∼200mm
Measurement Width	∼ 480mm
Measurement	Handy Scanning Measurement Speed: 10cm/sec MAX.
Weight	\sim 5kg (Radar Unit), \sim 15kg (Control Unit)

CENTER FOR NORTHEAST ASIAN STUDIES

まとめ 電波科学による防災・減災への取り組み

- 新しい電波利用の技術
- 近距離レーダ、ポーラリメトリ

常時モニタリングや頻繁なモニタリングの必要性

- 地滑り、火山など防災・減災技術
- インフラモニタリング
- 新しい計測手法の提案
- 耐震診断
- 被災者捜索

CENTER FOR NORTHEAST ASIAN STUDIES

